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IN AN A N N U L A R  R E G I O N  W I T H  A G I V E N  H E A T  

F L U X  
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We consider unsteady flow and heat t r ans fe r  for a viscous incompressible  liquid in a horizontal  annular 
channel with a constant heat flux on its outer  surface.  

The investigation is based on numerical  solution of the sys tem of two-dimensional  unsteady equations of 
motion, continuity, and energy,  which has the following form in the polar  coordinate sys tem [1]: 

) . o  ) "--~Ol _~_ "~t k ~'~(oF OrO[ OFor 0~01 ._. Pr V ~] + GrPr I ~ -  sm ~ - -  -FFr c o s  r 

O0 i {OF O0 OF O0)  

where F and f are  the dimensionless  s t ream function and vort ici ty,  respectively;  r i=R i /6  are  the dimension-  
less radii of the inner (i = l) and outer  (i = 2) cylinders;  and 6 =R 2 - R 1 is the gap between the cylinders.  

As a tempera ture  scale for dimensionless  t empera tu re  | we choose the quantity {AT), equal to the 
difference between the average  t empera tu res  of the outer  and inner surfaces ,  i.e., (AT) = (Tw2) - Twl. 

We assume that the liquid is motionless  at zero t ime in the annular region and that the tempera ture  
distribution corresponds  to heat-conduction conditions. A constant tempera ture  | 1 =Twt / (AT ) is maintained 
on the inner cylinder, and a constant heat flux qw2, is maintained on the outer cylinder, which is equivalent to 
the condition (a| = 1 with the assumed scale.  The initial distribution @(r, ~0), in accordance  with the heat-  
conduction equation and the given boundary conditions has the form 

0 = r.~ In r/r x -~- Ow;. 
The following s imilar i ty  pa r ame te r s  are  introduced into the original sys tems  of equations: Gr = gfl �9 

( ( rwz)-  Twl)/v2 , the Grashof  pa ramete r ;  P r  = v/a, the Prandt l  number; and Fo = ~'=at/~ 2, the Four ier  number.  

The Zeidel method was used for numerica l  solution of the sys tem of equations of convective heat t r a n s -  
fer, following a pre l iminary  integration of the equations in an elementary cell of the mesh [1]; thc Poisson 
equation was solved by the method of var iable  direct ions.  We used second-o rde r  formulas to approximate the 
derivat ives on the boundaries of the region. The computation was car r ied  out in a 17 x 17 mesh for half of the 
annular region (we assumed  symmet ry  relative to the ver t ical  axis pass ing through the center  of the annular 
layer).  The difference of the main resul ts  of the computation from those obtained from a finer 22 • 22 mesh 
was not more  than 3%. 

Figures  1 and 2 show the development with t ime of the circulation motion and the variat ion of the radial 
Vr and tangential Vcp velocity components in different sections of the annular region (Gr = 104, P r  = 0.7, ry / r  1 = 2 
and g is the accelera t ion due to gravity,  m/secY). If  the liquid is at res t  at ze ro  time, then for Fo = 0.02 the 
velocit ies reach their  maximum values,  and then gradually decrease ,  approaching some constant values (Fo = 1), 
as can be seen by comparing Figs.  i and 2. I lore the center  of vort ici ty (and also the region of minimum 
velocity) moves  downward as the steady conditions become established. 

It is charac te r i s t ic  that with increase  of Rayleigh number  (Ra =GrPr)  there is a gradual decrease  in the 
t ime at which the maximum convective intensity is reached. 
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We can judge the  beginning of  the inf luenc~ of  convect ion  in the  f ield |  9) f r o m  the  appea rance  of  the 
v e r t i c a l  t e m p e r a t u r e  d i f f e r e nc e s .  F igu re  3 shows  the  v a r i a t i o n  with t ime  of  the t e m p e r a t u r e  d is t r ibut ions  for  
five va lue s  of  the po l a r  angle  q~ unde r  condit ion~ given by Gr  = 104, P r = 0.7, r z / r  1 = 2, qw2 = 1, where  the solid 
cu rves  c o r r e s p o n d  to Fo = 1 and the dashed  cu rv}s ,  to  Fo = 0.02. 
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The one-dimensional  t empera tu re  field | =| for F| = 0 begins to experience these convection effects 
for F| =0.02. The t empera tu re  prof i les  begin to diverge and for  Fo= 0.1 reach  a steady distribution, with t em-  
pera ture  layer ing  typical  of convection. 

A s imi la r  relat ion obtains in the var ia t ion of the t empera tu re  of the external  wail @w 2, as  a function of 
F| (Fig. 4, Gr=  104, P r  = 0.7, r2 / r l  = 2). The constant t empera tu re  Ow 2 for  F| = 0 becomes appreciably non- 
uniform along r so F| inc reases ,  and, s tar t ing at Fo=0.3 ,  prac t ica l ly  does not vary  with t ime. The maximum 
sca t t e r  in Ow 2 under  steady conditions is 25% of the mean value for these conditions (Gr = 104). 

As is shown in Fig.  5 (Pr=0 .7 ) ,  the nonuniformity of the t empera tu re  of the outer  cylinder under steady 
conditions inc reases  with increase  in the Grashof  number,  and this change is basical ly caused by decrease  in 
the wall t empera tu re  in the lower par t  of the annular  layer .  

The investigation of the dependence of the t empera tu re  field on the Gr and F| numbers  reveals  three 
cha rac te r i s t i c  reg imes :  an initial regime,  close to the heat conduction region, when | =| a t ransi t ion 
regime in which convection begins to affect the t empera tu re  distribution (| =| Fo)); and a stat ionary r e -  
gime in which there  is no dependence of t empera tu re  on t ime (| =| This conclusion agrees  with the 
classif icat ion of r eg imes  of flow and heat t r ans fe r  for unsteady convection in a rec tangular  region, derived in 
[21. 

Knowing the t empera tu re  distr ibution in the flow field, one can calculate the local Nusselt  numbers  at the 
boundaries of the region,  which a re  determined in this case in t e r m s  of local t empera tu re  differences between 
the outer  and inner walls for each v~tlue of ~: 

.[a% i 

while the mean Nussel t  number  is obtained by averaging the local values with respec t  to ~ in the range [ - ~ / 2 ,  
~r/2] and is 

= / o e \  , <Nu)i \ ~ / t < ~ > '  

The graphs of variat ion of Nui(~) on the inner and outer  walls for var ious  values of Grashof  number a re  
shown in Fig. 6 [1) Gr =0.5" 10s; 2) Gr=  104; 3) Gr=0 .5"  104; 4) Gr = 103; 5) heat-conduction regime with Pr  =0.7, 
r2 / r  1 = 2]. 
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Following de te rmina t ion  of the Nusse l t  number ,  the function Nu2(tp) in e s sence  r ep roduces  a curve,  the 
inverse  of | ( see  Fig.  5) at the a p p r o p r i a t e  Gr  number ,  s ince | d e t e rmines  the local  d i f ference  | 
to an a c c u r a c y  within a constant  A| 

With i nc r ea s e  in the Gr  n u m b e r  f rom 103 to 0.5 �9 105, t he re  is a d e c r e a s e  in the local  number s  Nu 2 along 
the flow of h o t l i q u i d f r o m  r  to q)=Tr/2, around the outer  cyl inder  wall.  At some  value of cp in the range 
[~/4, ~/2] the local  va lues  of Nu become l e s s  than in the heat-conduct ion reg ime,  since the t e m p e r a t u r e  d i f fe r -  
ence (| - | l) i n th i s  region under  s teady conditions becomes  l e s s  than A| in the heat-conduct ion r eg ime .  

Thus ,  when t he r e  is a constant  heat  flux along the outer  cyl inder  su r face ,  the dis t r ibut ion of local  Nu 
number s  with r e s p e c t  to r d i f fe rs  m o r e  f rom the corresponding re la t ion  in the pure ly  heat -conduct ion r eg ime  
than the va r ia t ion  of | 2 along ~0 (see Fig. 5). 

In r e g a r d  to the family  of Nul( @ curves ,  cons t ruc ted  for va r ious  Gr  values  (see Fig. 65, these  mus t  be 
analyzed with a l lowance for  va r i a t ion  of local  heat  flux (O| 1 along the inner  cyl inder  su r face .  With liquid 
motion downward around the cold cyl inder  wall  the local  t e m p e r a t u r e  grad ien ts  d e c r e a s e  along ~p, because  of 
i nc rea se  of the bounda ry - l aye r  th ickness .  Because  these  a r e  no rma l i zed  to different  A|162 the fo rm of the 
Nul(q~) curves  d i f fe rs  f rom the analogous re la t ions  in the case  of isothe~znal boundar ies  [1]. 

This  d i f fe rence  begins to show up a t  Gr  > 103, when the nonuniformity of  | a s  a function of r becomes  
apprec iab le .  We see  a r i s e  in the curves  giving Nul, as  a function of ~ for  v / 2 >  ~v>v/8, in spi te  of a d e c r e a s e  
in local  heat  flux, which is due to the sha rp  d e c r e a s e  in the A| drop in this  range  of ~v (see Fig. 5). With 
fu r the r  va r ia t ion  of ~v f r o m  rr/8 to - -~r /2 , the sharp  dec r ea se  in ~(~v5 s tops ,  which leads  to a d e c r e a s e  in the Nu 
number  in th is  range  of ~0. At a ce r ta in  value of r the local  Nu numbers  become l e s s  than in the liquid at  r e s t .  

The  m a x i m a  of the Nul(q~) curves  (see Fig. 6) a r e  d isplaced with i nc rea se  of  Gr number .  This  c o r r e -  
sponds to a d i sp l acemen t  to the r igh t  of the point a t  which the sha rp  i n c r e a s e  in a |162 occu r s  (see Fig. 5). 

The  sha rp  va r ia t ion  in the nature  of the 0w2(r P) curves  for ~o~ v/4 is due to  the cons iderable  drop in the 
ve loc i t i e s  n e a r  th is  point.  

F o r  the c h a r a c t e r i s t i c s  of  h e a t - t r a n s f e r  in tens i ty  under  va r ious  flow r e g i m e s ,  we obtained a convective 
coefficient  dependence given by the fo rmula  

r 2 ehi = <Nu>iriln-~- ~ , i = t ,  2, 

as  a function of Rayle igh  number .  

During the e s t ab l i shmen t  of  s teady conditions the dependence ek = ek(Ra, Fo) conver t s  to ek = ek (Ra) with 
i nc r ea se  in Fo. The boundary for e s tab l i shment  of  s teady h e a t - t r a n s f e r  conditions during convective mot ion 
is app rox ima ted  by the formula  F| = 1 .52 /Ra  ~ 

Under s teady conditions the graphs  of ak as  a function of Rayle igh number  is app rox ima ted  by the p a r a -  
m e t r i c  re la t ion  ak=0.257Ra ~ 

In compar ing  with an analogous re la t ion  in the case  of i so the rma l  walls  it is c l ea r  tha t  for  smal l  Ra (Ra< 
23005 the heat  t r a n s f e r  is m o r e  intense under  the condition qw 2 = const,  while for l a rge  Ra  it is m o r e  intense 
in the case  @w2 = const.  This  is  due to a red i s t r ibu t ion  of outer  wall  t e m p e r a t u r e  under  conditions of constant 
heat  flux to it and to  the format ion  of a s tagnant  heated  zone in the upper  pa r t  of the  region,  prevent ing heat  
loss  f r o m  the hot wall.  
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We cons ider  the fully es tabl ished p roce s s  of the solidificaiion of a flat  continuous ingot in a cooling sys tem 
with a l iquid-meta l  h e a t - t r a n s f e r  medium, filling the gap between the sur face  of the ingot and the wa te r -coo led  
wall of the c ry s t a l l i z e r  (Fig. 1, where  1 is the ingot; 2 is the l iquid-metal  h e a t - t r a n s f e r  medium; 3 is the wall; 
4 is the cooling medium; and 5 is a capi l lary  packing). Here  we shall  a s sume  that  the ex te rna l  water  cooling 
can be regula ted  along the ingot, for example,  by sect ional  heat removal .  The p resence  of a l iquid-metal  hea t -  
t r a n s f e r  medium between the sur face  of the ingot and the wa te r -coo led  wall excludes the format ion of a gas 
gap, which makes  it possible  to inc rease  the ra te  of the cooling p roces s ,  making it uniform around the p e r i m -  
e t e r  of  the ingot. 

We a s sume  that  the t r a n s f e r  of heat along the Z axis due to the rma l  conductivity can be neglected in 
compar i son  with convective heat t r a n s f e r  [1] and that  the t em p e ra tu r e  of the metal  in the liquid phase is equal 
to the c rys ta l l iza t ion  t e m p e r a t u r e .  Under these  conditions, we shall take account of the effect  of heating of the 
mel t  by a corresponding inc rease  in the latent  heat  of fusion in the approximation of the Stefan condition. 

w If the width of the ingot is much g r e a t e r  than its thickness ,  then the solution of the problem posed 
will depend only on the two var iab les  x and z. We se lec t  a Car tes ian  sys tem of coordinates  with the Z axis 
lying in the plane of s y m m e t r y  of the ingot and as the origin of coordinates  we take the point of in tersec t ion  of 
the Z axis  with a plane pass ing through the point of the s t a r t  of crys ta l l iza t ion.  Taking account of the a s sump-  
t ions made above, the equation de termining  the t e m p e r a t u r e  distr ibution in the solid phase has the form 

pvC ~z = -~x f ~ ar'~.~x }, (i.i) 

where  v is  the veloci ty;  p is the density; C is the heat  capacity; and k is  the t he rma l  conductivity of the ingot. 

We wri te  the boundary condition at  the sur face  of the ingot in the form of the Newton-Richman  law 

~ar  : --  k (T [=ffi:.-- TM(z)), (1.2) 
~X X~Z,  

where  2x 0 is the thickness  of the ingot; TM is the t em p e ra tu r e  of the cooling medium (water),  which is a s sumed  
to be a given function of the coordinate z; k = (RH+ Rw+ R r) is the h ea t - t r an s f e r  coefficient;  RH and R w a r e  the 
t he rma l  r e s i s t ances  of the l iquid-meta l  h e a t - t r a n s f e r  medium and the wall; and Rr  is the ex te rna l  heat r e s i s -  
tance.  

At the c rys ta l l iza t ion  sur face ,  the following conditions must  be observed:  

~ a7' L-=-~(z~az = x*PcV~' (z); (1.3) 
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